MATH 1A - MOCK FINAL - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (20 points) Use the definition of the integral to evaluate:

$$
\int_{1}^{2} x^{2} d x
$$

You may use the following formulas:

$$
\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Preliminary work:

- $f(x)=x^{2}$
- $a=1, b=2, \Delta x=\frac{2-1}{n}=\frac{1}{n}$
- $x_{i}=1+\frac{i}{n}$

$$
\begin{aligned}
\int_{1}^{2} x^{2} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{n}\right)\left(1+\frac{i}{n}\right)^{2} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{n}\right)\left(1+\frac{2 i}{n}+\frac{i^{2}}{n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}+\frac{2 i}{n^{2}}+\frac{i^{2}}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}+\sum_{i=1}^{n} \frac{2 i}{n^{2}}+\sum_{i=1}^{n} \frac{i^{2}}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sum_{i=1}^{n} 1\right)+\frac{2}{n^{2}}\left(\sum_{i=1}^{n} i\right)+\frac{1}{n^{3}}\left(\sum_{i=1}^{n} i^{2}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}(n)+\frac{2}{n^{2}}\left(\frac{n(n+1)}{2}\right)+\frac{1}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right) \\
& =\lim _{n \rightarrow \infty} 1+\frac{n+1}{n}+\frac{(n+1)(2 n+1)}{6 n^{2}} \\
& =1+1+\frac{2}{6} \\
& =2+\frac{1}{3} \\
& =\frac{7}{3}
\end{aligned}
$$

Check: (not required, but useful)

$$
\int_{1}^{2} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{2}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}
$$

2. (10 points) Evaluate the following limit:

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{2}{n}}+\cdots+\sqrt{\frac{n}{n}}\right)
$$

Preliminary work:

- $f(x)=\sqrt{x}$
- $x_{i}=\frac{i}{n}$
- $a=x_{0}=0, b=x_{n}=1$

Hence the limit equals to:

$$
\int_{0}^{1} \sqrt{x} d x=\int_{0}^{1} x^{\frac{1}{2}} d x=\left[\frac{x^{3} 2}{\frac{3}{2}}\right]_{0}^{1}=\frac{1}{\frac{3}{2}}-0=\frac{2}{3}
$$

3. (50 points, 5 points each) Find the following:
(a) The antiderivative F of $f(x)=x^{2}+3 x^{3}-4 x^{7}$ which satisfies $F(0)=1$

The MGAD of f is:

$$
F(x)=\frac{x^{3}}{3}+\frac{3 x^{4}}{4}-\frac{4 x^{8}}{8}+C=\frac{x^{3}}{3}+\frac{3}{4} x^{4}-\frac{1}{2} x^{8}+C
$$

To solve for C, use the fact that $F(0)=1$, so $0+0-0+C=1$, so $C=1$, and hence:

$$
F(x)=\frac{x^{3}}{3}+\frac{3}{4} x^{4}-\frac{1}{2} x^{8}+1
$$

(b) $\int_{-1}^{1}|x| d x$

If you draw a picture of $f(x)=|x|$, you should notice that the integral is the sum of two triangles, one with base 1 and height 1 (from -1 to 0) and the other one with base 1 and height 1 (from 0 to 1), hence we get:

$$
\int_{-1}^{1}|x| d x=\frac{1}{2}(1)(1)+\frac{1}{2}(1)(1)=\frac{1}{2}+\frac{1}{2}=1
$$

(c)

$$
\int_{-\pi}^{\pi} \sin (x)\left(1+\cos (x)+e^{x^{2}}+42 x^{2012}\right) d x=0
$$

Since the function is an odd function!
(d)

$$
\int x^{2}+1+\frac{1}{x^{2}+1} d x=\frac{x^{3}}{3}+x+\tan ^{-1}(x)+C
$$

(e) $\int_{1}^{e} \frac{(\ln (x))^{2}}{x} d x$

Let $u=\ln (x)$, then $d u=\frac{1}{x} d x$, and $u(1)=\ln (1)=0$, and $u(e)=\ln (e)=1$, so:

$$
\int_{1}^{e} \frac{(\ln (x))^{2}}{x} d x=\int_{0}^{1} u^{2} d u=\left[\frac{u^{3}}{3}\right]_{0}^{1}=\frac{1}{3}-0=\frac{1}{3}
$$

(f)

$$
\begin{aligned}
\int_{\pi}^{2 \pi}(\cos (x)-2 \sin (x)) d x & =[\sin (x)+2 \cos (x)]_{\pi}^{2 \pi} \\
& =\sin (2 \pi)+2 \cos (2 \pi)-\sin (\pi)-2 \cos (\pi) \\
& =0+2-0+2 \\
& =4
\end{aligned}
$$

(g) $g^{\prime}(x)$, where $g(x)=\int_{x}^{e^{x}} \sqrt{1+t^{2}} d t$

Let $f(t)=\sqrt{1+t^{2}}$, then $g(x)=F\left(e^{x}\right)-F(x)$, so:

$$
g^{\prime}(x)=F^{\prime}\left(e^{x}\right) e^{x}-F^{\prime}(x)=f\left(e^{x}\right) e^{x}-f(x)=\sqrt{1+\left(e^{x}\right)^{2}}\left(e^{x}\right)-\sqrt{1+x^{2}}
$$

(h)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \frac{1+\cos ^{2}(\theta)}{\cos ^{2}(\theta)} d \theta & =\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos ^{2}(\theta)}+1 d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \sec ^{2}(\theta)+1 d \theta \\
& =[\tan (\theta)+\theta]_{0}^{\frac{\pi}{4}} \\
& =\tan \left(\frac{\pi}{4}\right)+\frac{\pi}{4}-\tan (0)-0 \\
& =1+\frac{\pi}{4}
\end{aligned}
$$

(i) $\int e^{x} \sqrt{1+e^{x}} d x$

Let $u=1+e^{x}$, then $d u=e^{x} d x$, so:

$$
\int e^{x} \sqrt{1+e^{x}} d x=\int \sqrt{u} d u=\frac{2}{3} u^{\frac{3}{2}}+C=\frac{2}{3}\left(1+e^{x}\right)^{\frac{3}{2}}+C
$$

(Don't forget to substitute $u=1+e^{x}$ back into your integral!)
(j) The average value of $f(x)=\sin (x)$ on $[-\pi, \pi]$

$$
\frac{\int_{-\pi}^{\pi} \sin (x) d x}{\pi-(-\pi)}=\frac{0}{2 \pi}=0
$$

Since $\sin (x)$ is an odd function!
4. (20 points) Find the area of the region enclosed by the curves:

$$
y=x^{2}-4 \quad \text { and } \quad y=4-x^{2}
$$

First draw a picture:

> 1A/Math 1A Summer/Exams/MockFparabola.png

Then determine the points of intersection between the two parabolas:

$$
\begin{aligned}
x^{2}-4 & =4-x^{2} \\
2 x^{2} & =8 \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

And notice that on $[-2,2], 4-x^{2}$ is always above $x^{2}-4$, so the area of the region is:

$$
\begin{aligned}
\int_{-2}^{2}\left(4-x^{2}\right)-\left(x^{2}-4\right) d x & =\int_{-2}^{2} 8-2 x^{2} d x \\
& =\left[8 x-\frac{2}{3} x^{3}\right]_{-2}^{2} \\
& =16-\frac{2}{3}(8)-\left(-16+\frac{2}{3}(8)\right) \\
& =16-\frac{16}{3}+16-\frac{16}{3} \\
& =32-\frac{32}{3} \\
& =\frac{64}{3}
\end{aligned}
$$

Of course, if you're clever about this, you might have noticed that the area is $4 \int_{0}^{2} 4-x^{2} d x$, but you didn't have to be so clever about it! :)
5. (20 points, 5 points each) Find the following limits
(a)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x & =\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+x}-x\right)\left(\sqrt{x^{2}+x}+x\right)}{\sqrt{x^{2}+x}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+x-x^{2}}{\sqrt{x^{2}+x}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+x}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}} \sqrt{1+\frac{1}{x}}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x}{x \sqrt{1+\frac{1}{x}}+x} \quad \text { since } \sqrt{x^{2}}=|x|=x, \text { since } x>0 \\
& =\lim _{x \rightarrow \infty} \frac{x}{x\left(\sqrt{1+\frac{1}{x}}+1\right)} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x}}+1} \\
& =\frac{1}{1+1} \\
& =\frac{1}{2}
\end{aligned}
$$

(b) $\lim _{x \rightarrow \infty}(1+x)^{\frac{1}{x}}$

1) Let $y=(1+x)^{\frac{1}{x}}$
2) Then $\ln (y)=\frac{1}{x} \ln (1+x)=\frac{\ln (1+x)}{x}$
3)

$\lim _{x \rightarrow \infty} \ln (y)=\lim _{x \rightarrow \infty} \frac{\ln (1+x)}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{1+x}}{1}=0$
4) Hence

$$
\lim _{x \rightarrow \infty} y=e^{0}=1
$$

(c) $\lim _{x \rightarrow 0} x e^{\sin \left(\frac{1}{x}\right)}$

First of all,

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

Hence:

$$
e^{-1} \leq e^{\sin \left(\frac{1}{x}\right)} \leq e^{1}
$$

And so:

$$
x e^{-1} \leq x e^{\sin \left(\frac{1}{x}\right)} \leq x e
$$

But $\lim _{x \rightarrow 0} x e^{-1}=\lim _{x \rightarrow 0} x e=0$, hence by the Squeeze theorem,

$$
\lim _{x \rightarrow 0} x e^{\sin \left(\frac{1}{x}\right)}=0
$$

(d)

$$
\lim _{x \rightarrow \infty} \frac{(\ln (x))^{2}}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{2 \ln (x) \frac{1}{x}}{1}=\lim _{x \rightarrow \infty} \frac{2 \ln (x)}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\frac{2}{x}}{1}=\frac{2}{\infty}=0
$$

6. (20 points, 5 points each) Find the derivatives of the following functions
(a) $f(x)=\sin (x) e^{\tan (x)}$

$$
f^{\prime}(x)=\cos (x) e^{\tan (x)}+\sin (x) e^{\tan (x)} \sec ^{2}(x)
$$

(b) $f(x)=x^{\cos (x)}$
$\underline{\text { Logarithmic differentiation }}$

1) Let $y=x^{\cos (x)}$
2) Then $\ln (y)=\cos (x) \ln (x)$
3) $\frac{y^{\prime}}{y}=-\sin (x) \ln (x)+\frac{\cos (x)}{x}$
4)

$$
y^{\prime}=y\left(-\sin (x) \ln (x)+\frac{\cos (x)}{x}\right)=x^{\cos (x)}\left(-\sin (x) \ln (x)+\frac{\cos (x)}{x}\right)
$$

(c) y^{\prime}, where $x^{3}+y^{3}=x y$

$$
\begin{aligned}
3 x^{2}+3 y^{2} y^{\prime} & =y+x y^{\prime} \\
3 y^{2} y^{\prime}-x y^{\prime} & =y-3 x^{2} \\
\left(3 y^{2}-x\right) y^{\prime} & =y-3 x^{2} \\
y^{\prime} & =\frac{y-3 x^{2}}{3 y^{2}-x}
\end{aligned}
$$

(d) y^{\prime} at $(0,1)$, where $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=-y$

$$
\frac{\left(2 x+2 y y^{\prime}\right)\left(x^{2}-y^{2}\right)-\left(x^{2}+y^{2}\right)\left(2 x-2 y y^{\prime}\right)^{2}}{\left(x^{2}-y^{2}\right)}=-y^{\prime}
$$

Now plug in $x=0$ and $y=1$

$$
\begin{aligned}
\frac{2 y^{\prime}(-1)-(1)\left(-2 y^{\prime}\right)}{1} & =-y^{\prime} \\
-2 y^{\prime}+2 y^{\prime} & =-y^{\prime} \\
0 & =-y^{\prime} \\
y^{\prime} & =0
\end{aligned}
$$

7. (10 points) Find the absolute maximum and minimum of the following function on $[0, \pi]$:

$$
f(x)=x+\cos (x)
$$

1) Endpoints: $f(0)=1, f(\pi)=\pi-1$
2) Critical numbers:

$$
\begin{aligned}
& f^{\prime}(x)=1-\sin (x)=0 \Longleftrightarrow \sin (x)=1 \Longleftrightarrow x=\frac{\pi}{2} \\
& f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\cos \left(\frac{\pi}{2}\right)=\frac{\pi}{2}
\end{aligned}
$$

3) Compare: The absolute max of f is $f(\pi)=\pi-1$ and the absolute min of f is $f(0)=1$

Bonus 1 (5 points) Show that if f is continuous on $[0,1]$, then $\int_{0}^{1} f(x) d x$ is bounded, that is, there are numbers m and M such that:

$$
m \leq \int_{0}^{1} f(x) d x \leq M
$$

Hint: Use one of the 'value' theorems that we haven't used a lot in this course (see section 4.1)

By the extreme value theorem, f attains an absolute $\max M$ and an absolute $\min m$. This means that for all x in $[0,1]$:

$$
m \leq f(x) \leq M
$$

Now integrate:

$$
\begin{aligned}
\int_{0}^{1} m d x & \leq \int_{0}^{1} f(x) d x \leq \int_{0}^{1} M d x \\
m(1-0) & \leq \int_{0}^{1} f(x) d x \leq M(1-0) \\
m & \leq \int_{0}^{1} f(x) d x \leq M
\end{aligned}
$$

Bonus 2 (5 points) If $f(x)=A x^{3}+B x^{2}+C x+D$ is a polynomial such that:

$$
\frac{A}{4}+\frac{B}{3}+\frac{C}{2}+D=0
$$

Show that f has at least one zero on $(0,1)$.
Hint: What is the average value of f on $[0,1]$?

By the MVT for integrals on $[0,1]$, for some c in $(0,1)$, we have:

$$
f(c)=\frac{\int_{0}^{1} f(x) d x}{1-0}
$$

But:

$$
\begin{aligned}
\frac{\int_{0}^{1} f(x) d x}{1-0} & =\int_{0}^{1} f(x) d x \\
& =\int_{0}^{1}\left(A x^{3}+B x^{2}+C x+D\right) d x \\
& =\left[\frac{A}{4} x^{4}+\frac{B}{3} x^{3}+\frac{C}{2} x^{2}+D x\right]_{0}^{1} \\
& =\frac{A}{4}+\frac{B}{3}+\frac{C}{2}+D \\
& =0
\end{aligned}
$$

Hence, for some c in $(0,1)$, we have $f(c)=0$, so f has at least one zero c in $(0,1)$.

Bonus 3 (5 points) Another way to define $\ln (x)$ is:

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

Show using this definition only that for all a and b :

$$
\ln (a b)=\ln (a)+\ln (b)
$$

Hint: Fix a constant a, and consider the function:

$$
g(x)=\ln (a x)-\ln (x)-\ln (a)
$$

$$
\begin{aligned}
g(x) & =\ln (a x)-\ln (x)-\ln (a) \\
& =\int_{1}^{a x} \frac{1}{t} d t-\int_{1}^{x} \frac{1}{t} d t-\int_{1}^{a} \frac{1}{t} d t \\
& =F(a x)-F(1)-(F(x)-F(1))-(F(a)-F(1))
\end{aligned}
$$

Where F is an antiderivative of $f(t)=\frac{1}{t}$
Now differentiating g, and using the fact that a is a constant, we get:

$$
\begin{aligned}
g^{\prime}(x) & =F^{\prime}(a x)(a)-0-F^{\prime}(x)+0-0+0 \\
& =f(a x)(a)-f(x) \\
& =\left(\frac{1}{a x}\right)(a)-\frac{1}{x} \\
& =\frac{1}{x}-\frac{1}{x} \\
& =0
\end{aligned}
$$

Hence $g^{\prime}(x)=0$, so $g(x)=C$, where C is a constant.
To figure out what C is, let's calculate $g(1)$:

$$
\begin{aligned}
g(1) & =C \\
\int_{1}^{1} \frac{1}{t} d t & =C \\
0 & =C \\
C & =0
\end{aligned}
$$

Hence $C=0$, and so $g(x)=0$, whence $\ln (a x)-\ln (x)-\ln (a)=$ 0 , so $\ln (a x)=\ln (a)+\ln (x)$.

Since this holds for all x, let $x=b$, and we get:

$$
\ln (a b)=\ln (a)+\ln (b)
$$

BAZINGA!!!

