
MATH 1A - MOCK FINAL - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (20 points) Use the definition of the integral to evaluate:

∫ 2

1

x2dx

You may use the following formulas:

n∑
i=1

1 = n
n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
n2(n+ 1)2

4

Preliminary work:
• f(x) = x2

• a = 1, b = 2, ∆x = 2−1
n

= 1
n

• xi = 1 + i
n

Date: Friday, August 5th, 2011.
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∫ 2

1

x2dx = lim
n→∞

n∑
i=1

∆xf(xi)

= lim
n→∞

n∑
i=1

(
1

n

)(
1 +

i

n

)2

= lim
n→∞

n∑
i=1

(
1

n

)(
1 +

2i

n
+
i2

n2

)

= lim
n→∞

n∑
i=1

1

n
+

2i

n2
+
i2

n3

= lim
n→∞

n∑
i=1

1

n
+

n∑
i=1

2i

n2
+

n∑
i=1

i2

n3

= lim
n→∞

1

n

(
n∑
i=1

1

)
+

2

n2

(
n∑
i=1

i

)
+

1

n3

(
n∑
i=1

i2

)

= lim
n→∞

1

n
(n) +

2

n2

(
n(n+ 1)

2

)
+

1

n3

(
n(n+ 1)(2n+ 1)

6

)
= lim

n→∞
1 +

n+ 1

n
+

(n+ 1)(2n+ 1)

6n2

=1 + 1 +
2

6

=2 +
1

3

=
7

3

Check: (not required, but useful)∫ 2

1

x2dx =

[
x3

3

]2
1

=
8

3
− 1

3
=

7

3
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2. (10 points) Evaluate the following limit:

lim
n→∞

1

n

(√
1

n
+

√
2

n
+ · · ·+

√
n

n

)

Preliminary work:
• f(x) =

√
x

• xi = i
n

• a = x0 = 0, b = xn = 1
Hence the limit equals to:

∫ 1

0

√
xdx =

∫ 1

0

x
1
2dx =

[
x32
3
2

]1
0

=
1
3
2

− 0 =
2

3
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3. (50 points, 5 points each) Find the following:

(a) The antiderivative F of f(x) = x2 + 3x3 − 4x7 which satisfies
F (0) = 1

The MGAD of f is:

F (x) =
x3

3
+

3x4

4
− 4x8

8
+ C =

x3

3
+

3

4
x4 − 1

2
x8 + C

To solve for C, use the fact that F (0) = 1, so 0+0−0+C = 1,
so C = 1 , and hence:

F (x) =
x3

3
+

3

4
x4 − 1

2
x8 + 1

(b)
∫ 1

−1 |x| dx

If you draw a picture of f(x) = |x|, you should notice that the
integral is the sum of two triangles, one with base 1 and height
1 (from −1 to 0) and the other one with base 1 and height 1
(from 0 to 1), hence we get:∫ 1

−1
|x| dx =

1

2
(1)(1) +

1

2
(1)(1) =

1

2
+

1

2
= 1

(c) ∫ π

−π
sin(x)(1 + cos(x) + ex

2

+ 42x2012)dx = 0

Since the function is an odd function!

(d) ∫
x2 + 1 +

1

x2 + 1
dx =

x3

3
+ x+ tan−1(x) + C
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(e)
∫ e
1

(ln(x))2

x
dx

Let u = ln(x), then du = 1
x
dx, and u(1) = ln(1) = 0, and

u(e) = ln(e) = 1, so:

∫ e

1

(ln(x))2

x
dx =

∫ 1

0

u2du =

[
u3

3

]1
0

=
1

3
− 0 =

1

3

(f)∫ 2π

π

(cos(x)− 2 sin(x)) dx = [sin(x) + 2 cos(x)]2ππ

= sin(2π) + 2 cos(2π)− sin(π)− 2 cos(π)

=0 + 2− 0 + 2

=4

(g) g′(x), where g(x) =
∫ ex
x

√
1 + t2dt

Let f(t) =
√

1 + t2, then g(x) = F (ex)− F (x), so:

g′(x) = F ′(ex)ex−F ′(x) = f(ex)ex−f(x) =
√

1 + (ex)2(ex)−
√

1 + x2

(h) ∫ π
4

0

1 + cos2(θ)

cos2(θ)
dθ =

∫ π
4

0

1

cos2(θ)
+ 1dθ

=

∫ π
4

0

sec2(θ) + 1dθ

= [tan(θ) + θ]
π
4
0

= tan(
π

4
) +

π

4
− tan(0)− 0

=1 +
π

4
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(i)
∫
ex
√

1 + exdx

Let u = 1 + ex, then du = exdx, so:∫
ex
√

1 + exdx =

∫ √
udu =

2

3
u

3
2 + C =

2

3
(1 + ex)

3
2 + C

(Don’t forget to substitute u = 1 + ex back into your integral!)

(j) The average value of f(x) = sin(x) on [−π, π]

∫ π
−π sin(x)dx

π − (−π)
=

0

2π
= 0

Since sin(x) is an odd function!
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4. (20 points) Find the area of the region enclosed by the curves:

y = x2 − 4 and y = 4− x2

First draw a picture:

1A/Math 1A Summer/Exams/MockFparabola.png

Then determine the points of intersection between the two parabo-
las:

x2 − 4 =4− x2

2x2 =8

x2 =4

x =± 2

And notice that on [−2, 2], 4− x2 is always above x2 − 4, so the
area of the region is:
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∫ 2

−2
(4− x2)− (x2 − 4)dx =

∫ 2

−2
8− 2x2dx

=

[
8x− 2

3
x3
]2
−2

=16− 2

3
(8)− (−16 +

2

3
(8))

=16− 16

3
+ 16− 16

3

=32− 32

3

=
64

3
Of course, if you’re clever about this, you might have noticed that

the area is 4
∫ 2

0
4 − x2dx, but you didn’t have to be so clever about

it! :)
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5. (20 points, 5 points each) Find the following limits

(a)

lim
x→∞

√
x2 + x− x = lim

x→∞

(
√
x2 + x− x)(

√
x2 + x+ x)√

x2 + x+ x

= lim
x→∞

x2 + x− x2√
x2 + x+ x

= lim
x→∞

x√
x2 + x+ x

= lim
x→∞

x
√
x2
√

1 + 1
x

+ x

= lim
x→∞

x

x
√

1 + 1
x

+ x
since

√
x2 = |x| = x, since x > 0

= lim
x→∞

x

x
(√

1 + 1
x

+ 1
)

= lim
x→∞

1√
1 + 1

x
+ 1

=
1

1 + 1

=
1

2

(b) limx→∞(1 + x)
1
x

1) Let y = (1 + x)
1
x

2) Then ln(y) = 1
x

ln(1 + x) = ln(1+x)
x

3)

lim
x→∞

ln(y) = lim
x→∞

ln(1 + x)

x
H
= lim

x→∞

1
1+x

1
= 0

4) Hence
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lim
x→∞

y = e0 = 1

(c) limx→0 xe
sin( 1

x
)

First of all,

−1 ≤ sin

(
1

x

)
≤ 1

Hence:

e−1 ≤ esin(
1
x) ≤ e1

And so:

xe−1 ≤ xesin(
1
x) ≤ xe

But limx→0 xe
−1 = limx→0 xe = 0, hence by the Squeeze

theorem,

lim
x→0

xesin(
1
x
) = 0

(d)

lim
x→∞

(ln(x))2

x
H
= lim

x→∞

2 ln(x) 1
x

1
= lim

x→∞

2 ln(x)

x
H
= lim

x→∞

2
x

1
=

2

∞
= 0
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6. (20 points, 5 points each) Find the derivatives of the following func-
tions
(a) f(x) = sin(x)etan(x)

f ′(x) = cos(x)etan(x) + sin(x)etan(x) sec2(x)

(b) f(x) = xcos(x)

Logarithmic differentiation

1) Let y = xcos(x)

2) Then ln(y) = cos(x) ln(x)

3) y′

y
= − sin(x) ln(x) + cos(x)

x

4)

y′ = y

(
− sin(x) ln(x) +

cos(x)

x

)
= xcos(x)

(
− sin(x) ln(x) +

cos(x)

x

)

(c) y′, where x3 + y3 = xy

3x2 + 3y2y′ =y + xy′

3y2y′ − xy′ =y − 3x2

(3y2 − x)y′ =y − 3x2

y′ =
y − 3x2

3y2 − x

(d) y′ at (0, 1), where x2+y2

x2−y2 = −y

(2x+ 2yy′)(x2 − y2)− (x2 + y2)(2x− 2yy′)

(x2 − y2)

2

= −y′
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Now plug in x = 0 and y = 1

2y′(−1)− (1)(−2y′)

1
=− y′

−2y′ + 2y′ =− y′

0 =− y′

y′ =0
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7. (10 points) Find the absolute maximum and minimum of the fol-
lowing function on [0, π]:

f(x) = x+ cos(x)

1) Endpoints: f(0) = 1, f(π) = π − 1

2) Critical numbers:

f ′(x) = 1− sin(x) = 0⇐⇒ sin(x) = 1⇐⇒ x =
π

2

f
(
π
2

)
= π

2
+ cos

(
π
2

)
= π

2

3) Compare: The absolute max of f is f(π) = π − 1 and the ab-

solute min of f is f(0) = 1
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Bonus 1 (5 points) Show that if f is continuous on [0, 1], then
∫ 1

0
f(x)dx is

bounded, that is, there are numbers m and M such that:

m ≤
∫ 1

0

f(x)dx ≤M

Hint: Use one of the ‘value’ theorems that we haven’t used a lot
in this course (see section 4.1)

By the extreme value theorem, f attains an absolute max M
and an absolute min m. This means that for all x in [0, 1]:

m ≤ f(x) ≤M

Now integrate:∫ 1

0

mdx ≤
∫ 1

0

f(x)dx ≤
∫ 1

0

Mdx

m(1− 0) ≤
∫ 1

0

f(x)dx ≤M(1− 0)

m ≤
∫ 1

0

f(x)dx ≤M
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Bonus 2 (5 points) If f(x) = Ax3 + Bx2 + Cx + D is a polynomial such
that:

A

4
+
B

3
+
C

2
+D = 0

Show that f has at least one zero on (0, 1).

Hint: What is the average value of f on [0, 1]?

By the MVT for integrals on [0, 1], for some c in (0,1), we have:

f(c) =

∫ 1

0
f(x)dx

1− 0
But: ∫ 1

0
f(x)dx

1− 0
=

∫ 1

0

f(x)dx

=

∫ 1

0

(Ax3 +Bx2 + Cx+D)dx

=

[
A

4
x4 +

B

3
x3 +

C

2
x2 +Dx

]1
0

=
A

4
+
B

3
+
C

2
+D

=0

Hence, for some c in (0,1), we have f(c) = 0 , so f has at least
one zero c in (0, 1).
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Bonus 3 (5 points) Another way to define ln(x) is:

ln(x) =

∫ x

1

1

t
dt

Show using this definition only that for all a and b:

ln(ab) = ln(a) + ln(b)

Hint: Fix a constant a, and consider the function:

g(x) = ln(ax)− ln(x)− ln(a)

g(x) = ln(ax)− ln(x)− ln(a)

=

∫ ax

1

1

t
dt−

∫ x

1

1

t
dt−

∫ a

1

1

t
dt

=F (ax)− F (1)− (F (x)− F (1))− (F (a)− F (1))

Where F is an antiderivative of f(t) = 1
t

Now differentiating g, and using the fact that a is a constant, we
get:

g′(x) =F ′(ax)(a)− 0− F ′(x) + 0− 0 + 0

=f(ax)(a)− f(x)

=

(
1

ax

)
(a)− 1

x

=
1

x
− 1

x
=0

Hence g′(x) = 0, so g(x) = C, where C is a constant.

To figure out what C is, let’s calculate g(1):
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g(1) =C∫ 1

1

1

t
dt =C

0 =C

C =0

Hence C = 0, and so g(x) = 0, whence ln(ax)− ln(x)− ln(a) =
0, so ln(ax) = ln(a) + ln(x).

Since this holds for all x, let x = b, and we get:

ln(ab) = ln(a) + ln(b)

BAZINGA!!!


